Inserting Line Segments into Triangulations and
Tetrahedralizations

Javier Bernal
National Institue of Standards and Technology, Gaithersburg, MD 20899, U. S. A.

Abstract

An algorithm by Bernal, De Floriani, and Puppo, for inserting a line segment into a Constrained Delaunay
triangulation is further developed. The new version of the algorithm inserts the line segment in exactly
the same manner in which the old one does but has the additional capability that it does not delete the
triangles intersected by the line segment but transforms them through edge-swapping. Since the concept of
edge-swapping generalizes to 3—dimensional space, a version of the algorithm without the optimization steps
for the Delaunay property is also proposed for attempting to insert a line segment into a tetrahedralization.
A result is then presented that shows that for certain cases the failure of this algorithm to insert a line
segment is an indication that it can not be done. Finally, 3—dimensional problems that can be approached
as 2—dimensional problems are identified.

1. Introduction

A triangulation for a finite set of points S in the plane is a finite collection of triangles in the plane having
pair-wise disjoint interiors, each of which intersects S exactly at its vertices, and the union of which is the
convex hull of S. Given a triangulation 71" for S, we say that 7" is Delaunay if for each triangle in 7" there
does not exist a point of S inside the circumcircle of the triangle [11]. A (Delaunay) tetrahedralization is
similarly defined with tetrahedra and spheres taking the place of triangles and circles.

A more general triangulation can be defined. Let S be as above, and let E be a finite collection, possibly
empty, of line segments with endpoints in S that intersect only at points in S. We say that a triangulation
T for S is constrained by E if each line segment in £ is the union of edges in 7. Given T, a triangulation
for S constrained by E, we say that T is Delaunay constrained by E if for each ¢ in T there does not exist a
point P of S inside the circumcircle of ¢ such that no line segment in E intersects the interior of the convex
hull of t U {P}.

Let E be as above. Given 7', a triangulation constrained by E, we say that T satisfies the empty circle
criterion on a local basis if given any two triangles ¢, t' in T that share a common edge not contained in any
line segment in E, then the vertex in ¢’ \ ¢ is not inside the circumcircle of ¢. That triangulations of this
type and constrained Delaunay triangulations are equivalent has been proven in [5], [9].

Algorithms for the computation of a Delaunay triangulation for the vertices of a polygon constrained by
the boundary of the polygon have been presented in [5], [9], [10]. As for the general problem of computing a
Delaunay triangulation for a set of n points constrained by a set of line segments, an O(n?) algorithm has been
presented in [9], O(nlogn) divide-and-conquer algorithms have been presented in [4], [13], and an O(nlogn)
plane-sweep algorithm has been presented in [12]. Each one of these algorithms has the disadvantage that
the set of line segments must be known before the execution of the algorithm.

In [6] a method has been presented for the incremental computation of a constrained Delaunay triangula-
tion by stepwise insertion of points and line segments. Accordingly, algorithms are presented in [6] for point
insertion and line segment insertion into a constrained Delaunay triangulation. Independently, the algorithm
for line segment insertion was also presented in [1]. In the following section, we describe a new version of this
algorithm that works in the same manner in which the old one does, but that has the additional capability of
not deleting the triangles intersected by the line segment, transforming them instead through edge-swapping
(Lawson’s transformation [8]). In Section 3, we take advantage of the fact that edge-swapping generalizes
to 3—dimensional space and propose what would be considered the generalization to 3—dimensional space
of the algorithm without the optimization steps for the Delaunay property. A result is then presented that
shows that for certain cases the failure of this algorithm to insert a line segment into a tetrahedralization is
an indication that it cannot be done. Finally, in the same section, 3—dimensional problems are identified
that can be approached algorithmically as if they are 2—dimensional.

2. Segment insertion by edge-swapping

Let T be a triangulation in the plane, not necessarily Delaunay, let Py, Py, Py # P», be vertices in 7', and
let T be the triangles in 7" whose interiors are intersected by P, P, i. e. the line segment with endpoints
Py, P,. We say that P, P, has been inserted into T' producing Tif T is a triangulation for the vertices of
T such that P, P, is the union of edges in T and each triangle in 7'\ T* is also in T. In what follows, and
assuming that 7' is constrained Delaunay, we present procedure INSERT_SEGMENT which inserts P, P
into the triangulation 7' by edge-swapping, producing a constrained Delaunay triangulation with P; P> as an
additional constraint. Without any loss of generality, we assume that P, P is not an edge in 7" and that its
relative interior does not contain any vertices in 7.

In [1] and [6] this algorithm was presented but without edge-swapping. This older version consists
essentially of two steps. In the first step, the triangles whose interiors are intersected by the line segment are
detected and deleted so that a non-triangulated region inside the convex hull of the original triangulation
results. In the second step, this region is divided into two polygons separated by the line segment, and a
Delaunay triangulation is then computed for each polygon. Each polygon satisfies the property that each
point in the polygon is visible through the polygon from the line segment. Because of this property, each
polygon can be easily triangulated in a linear fashion, and then optimized for the Delaunay property with
procedures based on the empty circle criterion. Outlines of this older version, justifications, optimization
procedures, and related results can be found in [1], [2], [6], [7].

The new version of the algorithm presented here works essentially in the same manner in which the
old one does, thus producing exactly the same triangles, but has the capability through edge-swapping of
maintaining at all times a complete triangulation. Let 7', P;, P», T* be as above. Essentially, ignoring the
optimization steps, the new version of the algorithm works as follows. For some integer n, let t;, i =1,...,n,
be the triangles in 7 in the order in which they are intersected by P, P; from P; to P,. Inductively, assume
that for an integer ¢, 1 <4 <mn —1, the triangles ¢;, j = 1,...,¢, have been processed in that order by the
algorithm and that 7" and 7" have been transformed accordingly. Triangle ¢;41, which still belongs to T, is
then processed as follows. Triangle t' is initialized to t;11. Triangle ¢’ is set equal to the triangle in 7, not
necessarily t;, that currently shares a facet with #' intersected by P; P, and which is closer to P, than ¢’ in the
direction of P, P,. If t' Ut" is not a strictly convex quadrilateral then the algorithm is done processing ;1.
Otherwise t', t", and therefore T* and T, are transformed through the replacement of the common edge by
the alternative diagonal of the quadrilateral. If only one of the two new triangles is intersected by P P, then
t' is redefined as the one that is intersected. Otherwise it is redefined as the one of the two triangles that is
closer to P; in the direction of P; P,. The process above is repeated for the new t', i. e. t”’ is redefined, etc.
until ¢ does not exist as desired or ¢/ U#" is not a strictly convex quadrilateral. The insertion of P, P, into
T is accomplished as soon as t, is processed by the algorithm.

Let T, Py, P>, T™" be as above. In the following, we list and describe, in the order of their first appearance,
procedures used in INSERT_SEGMENT as primitives.

INTERSECTED_TRIANGLES(T,T*, P;, P5, @, tr): This procedure identifies T*. It also locates ¢ty in T*
with P, as one of its vertices and a vertex @ of ¢ty different from P;.

NEXT_TRIANGLE(T, Py, P>, tp,tc): Assuming that P; P, intersects the interior of tp, tp in T, Py & tp,
this procedure locates t¢ in 1" which shares a facet with ¢p intersected by PP, and which is closer to P
than tp in the direction of P Ps.

NEXT_VERTEX(tp,tc, P): Assuming that triangles ¢tp and tc share a facet, this procedure locates vertex
P of tc not in tp.

PREVIOUS_VERTEX(t¢, P1, P>, P,@): Assuming that P is a vertex of triangle ¢t and that P, P, intersects
exactly one of the edges of t¢ with P as an endpoint, this procedure locates the vertex) of t¢ for which
P, P, does not intersect PQ.

STRICT.CONVEXITY (t¢, tp, flag2): Assuming that triangles ¢ and tp share a facet, this procedure sets
flag2 to zero whenever tc U tp is not a strictly convex quadrilateral.

EDGE_SWAP(tc,tp,Q,T,T*): Assuming that tc Utp is a strictly convex quadrilateral, t¢, tp in T, and
that @ is a vertex in t¢ Ntp, this procedure transforms to, tp, and therefore 7™ and 7', through the re-
placement of the common edge by the alternative diagonal of the quadrilateral in such a way that @) is the
vertex of the transformed ¢p not in the transformed tc.

OPTIMIZE(T,T*,tp, P,Q), R): Assuming that P, @}, R are the vertices of tp, tp in T*, starting with ¢p
this procedure transforms 7™, and therefore T', through applications of the empty circle criterion and edge-
swapping in the direction of QR.

PREVIOUS_TRIANGLE(T, P,, Py, tc,tp): Assuming that PP intersects the interior of tc, tc in T,
Py ¢ to, this procedure locates tp in T' which shares a facet with t¢ intersected by P P», and which is
closer to P; than t¢ in the direction of P, Ps.

THIRD_VERTEX(tc, R, P,Q): Assuming that R, P are distinct vertices of triangle ¢, this procedure iden-
tifies @, the vertex of t¢ different from R and P.

The outline of INSERT_SEGMENT follows. We notice that without the optimization steps (steps 20
and 32) the procedure simply becomes one for inserting a line segment into a triangulation.

procedure INSERT_SEGMENT(T, Py, P,)
begin
1. INTERSECTED_TRIANGLES(T,T*, P, P, Q,tr);

2. F(l,tp) := Py; F(2,tp) := Q; flagl :=1;
3. while (flagl = 1) do
begin
4. tp = tF;
5. NEXT_TRIANGLE(T, Py, Py, tp,tc);
6. NEXT_VERTEX(tp,tc, P);
7. if (P # P») then
begin
8. PREVIOUS_VERTEX(t¢, P, P>, P, Q);
9. tp = to
end
else
begin
10. Q :=F(2,tp); flagl :=0
end
11. if (F(1,tp) = P,) then F(2,tp) := Q;
12. F(1,tc) == Q; F(2,tc) := P; flag2 :=1;
13. while (flag2 =1) do
begin
14. STRICT_.CONVEXITY (t¢, tp, flag2);
15. if (flag2 = 1) then
begin
16. R:=F(l,tp); tr, := tc;
17. EDGE_SWAP (t¢,tp,Q,T,T*);
18. if (tF = tL) then tp := ic;
19. if (F(1,tc) = F(2,tp)) then
begin
20. OPTIMIZE(T,T*,tp, P,Q, R);
21. F(l,t¢) :=R; Q:=R
end
else
begin
22. F(l,t¢) := R; F(2,tc) := F(2,tp);
23. F(l,tp) :=Q; F(2,tp) := Pjt¢ :=tp
end
24. if (R # Pp) then
begin
25. PREVIOUS_TRIANGLE(T, Py, P2, tc, tp);
26. if (F(1,tp) = P1) then F(2,tp) := Q;
27. if (P = P,) then
begin
28. Q = F(2;tP)7 F(]-;tC') = Q
end
end
else
begin
29. flag2 :=0;
30. if (P = P») then
begin
31. THIRD_VERTEX(t¢, R, P, Q);
32. OPTIMIZE(T,T*,tc, P,Q, R)

end

else

begin
33. NEXT_TRIANGLE(T, Py, P, tc,tNn);
34. F(2,tc) := F(1,tn)

end

end
end
end
end
end

Justifications of this procedure appear in [1], [3], [7].

3. The 3—dimensional version of the algorithm

Let T be a tetrahedralization, not necessarily Delaunay, let Py, P», Py # P,, be vertices in T, and let T be
the tetrahedra in T each of which is intersected by P, P, at either its interior or the relative interior of one
of its facets. We say that PP, can be inserted into T if a tetrahedralization T for the vertices of T exists
such that PP, is the union of edges in T and each tetrahedron in T \ T* is also in T. In what follows,
we present procedure 3D_INSERT_ATTEMPT which attempts to insert PP, into 7', and which can be
considered as the generalization to 3—dimensional space of INSERT_SEGMENT without the optimization
steps. We notice that only the case for which the relative interior of P; P, does not intersect any edges in T'
is addressed in what follows.

Let T, P, P> be as above. In the following, we list and describe, in the order of their first appearance,
procedures used in 3D_INSERT_ATTEMPT as primitives. Procedures with obvious 2—dimensional counter-
parts in INSERT_SEGMENT are neither listed nor described here.

FIRST_.TETRAHEDRON(T, P, P5, @, ty): This procedure locates ¢y in T' with P; as one of its vertices and
interior intersected by Py Py, and locates a vertex @ of ty, Q # Py.

COMMON_VERTEX(t¢,tp,@,S,U): Assuming that tetrahedra tc and tp share a facet, and that @ and
S are vertices, not necessarily distinct, of the facet, this procedure locates U, a vertex of the facet different
from @ and S.

TWO_THREE(T,tc,tp, P,R,Q,U): Assuming that tc Utp is a strictly convex hexahedron, tc, tp in T,
that P is the vertex in ¢t \ tp, that R is the vertex in tp \ t¢, and that @, U, Q # U, are vertices in tc Ntp,
this procedure transforms T by transforming tc and tp into the three tetrahedra that have PR in common
and whose union is the hexahedron, in such a way that ¢t becomes the one of the three tetrahedra that does
not have () as a vertex, and tp the one that has () and U as vertices.

FACET_INTERSECT(P,R,U, P, P, flag2): Assuming that P, R, U are the vertices of a facet of a tetra-
hedron, this procedure sets flag2 to zero whenever P, P, does not intersect the relative interior of the facet.

The outline of 3D_INSERT_ATTEMPT follows. Here a variable flag is defined which at the end of the
execution of the procedure equals 1 if P; P> has been inserted, zero otherwise.

procedure 3D_INSERT_ATTEMPT(T, Py, P, flag)

begin
1. flag :=0;
2. FIRST_.TETRAHEDRON(T, P, P»,Q, tr);
3. F(l,ty) := Py; F(2,tp) := Q; flagl :=1;
4. while (flagl = 1) do
begin
5. tp == tp;
6. NEXT_TETRAHEDRON(T, Py, P»,tp,tc);
7. NEXT_VERTEX(tp,tc, P);
8. if (P # P,) then
begin
9. PREVIOUS_VERTEX(t¢, P1, P>, P, Q);
10. trp == tc
end
else
begin

11. Q :=F(2,tp); flagl :=0

12.
13.
14.

15.
16.

17.
18.
19.

20.
21.
22.
23.

24.
25.

26.
27.
28.
29.
30.

31.
32.
33.
34.

35.

36.

37.

38.

39.
40.

end
if (F(1,tp) = P,) then F(2,tp) := Q;
F(1,tc) == Q; F(2,tc) := P; flag2 :=1;
while (flag2 =1) do

begin

STRICT_.CONVEXITY (t¢, tp, flag2);

if (flag2 = 1) then

begin
R:=F(1,tp); S := F(2,tp);
COMMON_VERTEX(t¢,tp,@Q,S,U);
if (F(1,tc) = F(2,tp)) then
begin
tr i=1c;
TWO_THREE(T,t¢,tp, P,R,Q,U);
if (tF = tL) then tr :={c;
F(l,t¢) :=R; Q:=R
end
else
begin
FACET_INTERSECT(P,R,U, Py, P», flag2);
if (flag2 = 1) then
begin
tr ==1tc;
TWO_THREE(T,tc,tp, P,R,Q,U);
if (tF = tL) then tr := t¢;
F(1,t¢) :== R; F(2,tc) = F(2,tp);
F(1,tp) = Q; F(2,tp) := Pjtc :=tp
end
end
if (flag2 = 1) then
begin
if (R # Py) then
begin
PREVIOUS_.TETRAHEDRON(T, Py, P, tc,tp);
if (F(1,tp) = P1) then F(2,tp) := Q;
if (P = P,) then
begin
Q= F(2,tp); F(L,tc) :=Q
end
end
else
begin
flag2 := 0;
if (P = P,) then flag :=1
else
begin
NEXT_TETRAHEDRON(T, P, P, tc,tN);
F(?,tc) = F(].,tN)
end
end
end
end

end

Experiments show that 3D_INSERT_ATTEMPT seldom succeeds in inserting a line segment. However,
this may just be an indication that it is seldom possible to insert a line segment into a tetrahedralization.
Let T', P, P>, T* be as above. The following proposition shows that for a certain kind of 7" the failure of

the procedure simply signifies that P} P, can not be inserted into 7.

Proposition 1. If points @1, Q2 exist, Q1 # @2, that are vertices of every tetrahedron in T*, then at the
end of the execution of 3D INSERT_ATTEMPT, variable flag equals 1 if and only if P, P> can be inserted
into 7'

Proof. That flag equal to 1 implies that the line segment can be inserted into 7" follows trivially. Thus, it
remains to be shown that if flag equals zero then the line segment can not be inserted into T'.

For some positive integer n, let ¢t;, ¢t =1,...,n, be the tetrahedra in 7 in the order in which they are
intersected by the line segment from P; to Ps.

At the end of the execution of the procedure let T** be the collection of tetrahedra in 7" that are intersected
by the relative interior of the line segment, and for some positive integer m, let t;, i =1,...,m, be the
tetrahedra in 7** in the order in which they are intersected by the line segment from P; to Ps.

Clearly, n > m, and since flag equals zero it follows that m > 3.

Let Ry equal P, and, inductively, for each i, 2 = 1,...,n, let R; be the vertex of ¢; different from R;_1, @1,
and 2. Similarly, points R}, i = 0,...,m are defined with respect to ¢}, i =1,...,m.

We define a function f from {0,...,m} into {0,...,n} in such a way that for each i,7 =0,...,m, R} equals
Ry(;)- Based on this definition, for each 4,4 =1,...,m, we then define sets W; C {Ro, ..., R,}, by

Wi = {Rf(i—l) = RéflaRf(i—l)—H; ey Rf(z) = R;}

From the definition of T** it follows that given i, 2 < i < m, the union of ¢/_, and t} is not a strictly convex
hexahedron (step 15 of procedure). Thus, it is not possible to insert the line segment and at the same time
to have a new tetrahedron in T with vertices @1, R} ,, R;_,, R;. The same is true for a tetrahedron with
vertices @2, R;_,, R._,, R;. From this and the fact that it is always true that F(1,tc) equals F(2,tp) in
step 19 of the procedure, it follows that for each i, i = 2,...,m, it is not possible to insert the line segment
and at the same time to have a new tetrahedron with one vertex equal to either ()1 or ()2, two vertices in
Wi_1, and one vertex in W; \ {R]_, }.

In what follows, we assume that the line segment can be inserted into 7. Thus, we must assume that 7" has
been transformed in such a way that the line segment is one of its edges. Clearly, in the transformed 7%,
which we denote by T*, only one tetrahedron can have both (); and) as vertices, namely the tetrahedron
with vertices @1, Q2, Py, and P,. All other tetrahedra with either); or ()» as a vertex have in addition
three vertices of the form R;, Ry, R, 0 <j <k <l <n.

For some integer n', 1 < n' < n, we define integers h;, l;, i =0,...,n’', as follows. We let hy and Iy equal
0 and n, respectively. Inductively, given i, ¢ > 0, we assume integers h;_1, l[;_1, 0 < h;—1 <l;—1 <n, have
been defined such that for integers j, k, 1 < j <k <m, Ry, , € Wj, R, , € Wi, Rp, | # R}, Ry, |, # R},
and the triangle with vertices Q1, Ry, ,, Ri,_, is a facet of a tetrahedron in 7*. Then from the geometry
of T* and the last fact about the triangle with vertices Q1, Rn, ,, Ri,_,, it follows that integers h;, [; exist,
hi—1 < hy <l; <lj—1, for which Ry, € Wj, R;, € W;, and the tetrahedron with vertices Q1, Rp,_,, Rp,;, R,
belongs to T+ If R;; belongs to Wj;1 then we let n' equal i. That for some i, 1 <4 <n, and some j,
1< j <m, Ry, belongs to Wj41, while Ry, ,, Ry, belong to W;, follows from the fact that {h;} is an
increasing sequence of integers bounded above by {l;} which is itself a non-increasing sequence of integers.
Thus, n' is well defined. However, this is a contradiction, for it implies for some j, 1 < j < m, the existence
of a tetrahedron in 7* with one vertex equal to @1, two vertices in Wj, namely R, , and Rj ,, and one
vertex in Wy \ {R}}, namely R; ,. This completes the proof of the proposition.

Finally, we shed more light on the fundamental differences between planar and 3—dimensional line in-
sertion problems by identifying those 3—dimensional problems that can be approached algorithmically as
2—dimensional problems. In order to do this we first develop some notation. For a positive integer n, let

P, i =1,...,n, be distinct points in the — y plane of 3—dimensional space, and for each i, i =1,...,n,
let z;, y; be the x— and y—coordinates, respectively, of P;. Given a triangulation T for the set of points P;,
i=1,...,n, and numbers z;, i = 1,...,n, we let 7' be the collection of distinct 2—dimensional triangles in

3—dimensional space whose perpendicular projection onto the x — y plane is T, and whose set of vertices
equals the set of points P/, i = 1,...,n, defined by setting P/ equal to (z;,y;,2;) for each i, i =1,...,n.

Let P;, P!, zi, yi, zi, i =1,...,n, T, T' be as above. Assume that P, P, is not an edge in 7" and that
its relative interior does not contain any vertices in T'. Let T™ be the collection of triangles in 7' that are
intersected by the relative interior of P, P, and let T' be the collection of triangles in 7" whose perpendicular
projection onto the x — y plane is 7. For arbitrarily large positive z we let Q represent the point (0,0, z),
and T the collection of tetrahedra obtained by computing the convex hulls of Q together with each of the
triangles in 7. In what follows, we say that P] P} can be inserted into T if a collection of tetrahedra T exists

such that the tetrahedra in T have pair-wise disjoint interiors, the relative interior of @ is contained in
the interior of the union of the tetrahedra in 7', PP} is an edge in T, T and T have the same set of vertices,
and the union of the tetrahedra in T equals the union of the tetrahedra in T'. Based on these definitions, we
notice that if P|Pj satisfies the prerequisite for insertion into T, i. e. its relative interior lies entirely in T
and does not intersect any edges of tetrahedra in T, then an attempt can be made to insert it into 7" with
3D_INSERT_ATTEMPT even though 7" is not necessarily a complete tetrahedralization for its vertices.
We assume that P]Pj satisfies the prerequisite for insertion into T, that INSERT_SEGMENT (without
the optimization steps) has been executed for inserting P;P» into T', and that procedure EDGE_SWAP
(step 17 of INSERT_SEGMENT) has been executed m times during the insertion. Similarly, we assume
that 3D_INSERT_ATTEMPT has been executed for attempting to insert P{Pj into 7" and that procedure
TWO_THREE (steps 21 and 27 of 3D_INSERT_ATTEMPT) has been executed m' times during the attempt.
We define functions a, e from {1,...,m} into {(i,j) : 1 <i < j < n} asfollows: Givenl, 1 <1 < m, we set
a(l) and e(l) equal to (h, k) and (g,), respectively, where h, k, g, 7 areintegers, 1 < h <k <n,1 <g<r <n,
for which after the I*"* execution of EDGE_SWAP in INSERT_SEGMENT, P, P, is the new edge in the
triangulation and P, P, is the edge that has been eliminated. Correspondingly, assuming m' > 0, we also
define functions o', €’ from {1,...,m/} into {(i,7) : 1 <i < j < n} asfollows: Givenl, 1 <1< m', weset a'(l)
and €'(l) equal to (h, k) and (g, r), respectively, where h, k, g, 7 are integers, l < h <k <n,1 <g<r <n,
for which after the {*" execution of TWO_THREE in 3D_INSERT_ATTEMPT, P; P} is the edge that the
three new tetrahedra have in common and P, P] is the edge that the two eliminated tetrahedra had in common

and that does not have as an endpoint. Clearly, a(m) equals (1,2), and if 3D_INSERT_ATTEMPT is
successful then m’ > 0 and a’(m') also equals (1, 2).

Finally, in what follows, given integers h, k, ¢, 7, 1 < h < k <n, 1 < ¢ <r <n, wesay that (h, k) crosses
(g,r) if the relative interiors of Py Py, and P,P, have one and only one point in common. Assuming (h, k)
crosses (g,r), we say then that (h, k) is below (g,7) if at the point at which P, Py, intersects P, P,, P} P is
lower than PP} with respect to the z—axis.

We are now ready to present a proposition that identifies the conditions that the tetrahedra in ’fi must
satisfy so that P|Pj satisfies the prerequisite for insertion into 7', and can then be inserted into 7' with
3D_INSERT_ATTEMPT in a manner that mimics exactly what INSERT_SEGMENT does when inserting
Pl P2 into T'.

Proposition 2. P[P, satisfies the prerequisite for insertion into T, m equals m’, and for each integer I,
I=1,...,m,a(l) equals a'(I), and e(l) equals €'(l) so that P|Pj can be inserted into 7" if and only if for each
integer I, 1 =1,...,m, e(l) is below a(l).

Proof. The ‘only if’ part follows easily. In order to prove the ‘if’ part it suffices to prove that for each integer [,
I=1,...,m,e(l), which obviously crosses (1, 2), is below (1,2). This will imply that the line segment satisfies
the prerequisite for insertion in 7', and that flag2 always equals 1 in step 25 of 3D_INSERT_ATTEMPT
(after the execution of procedure FACET_INTERSECT in step 24).

Let T* be as defined above, and let T equal T'*. Inductively, for each [, I =1,...,m, let T;* be the
collection of triangles in the x —y plane of 3—dimensional space which is the transformation of 1}" ;| after
the I*" edge swap.

Let T be as defined above. For each l,1 = 0,...,m, let T} be the collection of distinct 2—dimensional triangles
in 3—dimensional space whose perpendicular projection onto the x — y plane equals T}*, and whose set of
vertices equals that of T.

For each [, =0,...,m, we define a real-valued function f; with domain the union of the triangles in 7 as
follows. Given a point P in a triangle in 7 we let &, § be the x— and y—coordinates, respectively, of P,
and let f;(P) be the unique number for which the point defined by (£, 7, f;(P)) belongs to a triangle in T;.
Given an integer [, 1 <! <m,let h, k,q, r, 1 <h<k<n,1<g<r<mn,be those integers for which a(l)
equals (h, k) and e(l) equals (g,r). By definition T}* is the transformation of T;* ; obtained by replacing the
edge with endpoints F,, P, by the edge with endpoints Py, P;. Clearly, the replaced edge is shared by two
triangles in 1}" ; whose union is a strictly convex quadrilateral and the new edge is the alternative diagonal of
this quadrilateral. These observations and the fact that e(l) is below a(l) imply that f;_; equals f; everywhere
except in the relative interior of the aforementioned quadrilateral in which f;_; is strictly less than f;. In
particular, given a point P in the relative interior of the replaced edge, it then follows that fi_; (P) < fi(P).
Thus, since the edge with endpoints P;, P belongs to T}, given an integer [, 1 <! < m, and a point P
which is the intersection of the edge with endpoints P, I%» and the edge replaced in 1" ; during the [th
edge swap, it must follow that f—;(P) < fi(P) < fm(P). Hence, e(l) is below (1,2) and the proof of the
proposition is complete.

References

[1] J. Bernal, On constructing Delaunay triangulations for sets constrained by line segments, National
Institute of Standards and Technology Technical Note 1252 (1988).

[2] J. Bernal, Computing Delaunay triangulations for comet-shaped polygons, National Institute of Stan-
dards and Technology Internal Report 4716 (1991).

[3] J. Bernal, Inserting line segments into triangulations and tetrahedralizations, National Institute of
Standards and Technology Internal Report 5596 (1995).

[4] L. P. Chew, Constrained Delaunay triangulations, Algorihtmica 4 (1989), 97-108.

[5] L. De Floriani, B. Falcidieno, and C. Pienovi, Delaunay-based representation of surfaces defined over
arbitrarily shaped domains, Computer Vision, Graphics, and Image Processing 32 (1985), 127-140.

[6] L. De Floriani and E. Puppo, Constrained Delaunay triangulation for multiresolution surface description,
Proc. 9" International Conference on Pattern Recognition (1988), 566-569.

[7] L. De Floriani and E. Puppo, A dynamic incremental algorithm for constrained Delaunay triangulation,
Istituto per la Matematica Applicata Tech. Rep. (1988).

[8] C. L. Lawson, Transforming triangulations, Discrete Math. 3 (1972), 365-372.

[9] D. T. Lee and A. K. Lin, Generalized Delaunay triangulation for planar graphs, Discrete Comput.
Geom. 1 (1986), 201-217.

[10] B. A. Lewis and J. S. Robinson, Triangulation of planar regions with applications, The Comput. J. 21
(1978), 324-332.

[11] F. P. Preparata, M. I. Shamos, Computational Geometry - An Introduction, Springer-Verlag, New York
(1985).

[12] R. Seidel, Constrained Delaunay triangulation and Voronoi diagrams with obstacles, Rep. 260, IIG-TU
Graz, Austria (1988), 178-191.

[13] C. A. Wang and L. Schubert, An optimal algorithm for constructing the Delaunay triangulation of a
set of line segments, Proc. 3" Ann. ACM Symp. on Computational Geometry (1987), 223-232.

